The Office

Author

Mine Çetinkaya-Rundel

library(tidyverse)
library(tidymodels)
library(schrute)
library(lubridate)

Use theoffice data from the schrute package to predict IMDB scores for episodes of The Office.

glimpse(theoffice)
Rows: 55,130
Columns: 12
$ index            <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16…
$ season           <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,…
$ episode          <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,…
$ episode_name     <chr> "Pilot", "Pilot", "Pilot", "Pilot", "Pilot", "Pilot",…
$ director         <chr> "Ken Kwapis", "Ken Kwapis", "Ken Kwapis", "Ken Kwapis…
$ writer           <chr> "Ricky Gervais;Stephen Merchant;Greg Daniels", "Ricky…
$ character        <chr> "Michael", "Jim", "Michael", "Jim", "Michael", "Micha…
$ text             <chr> "All right Jim. Your quarterlies look very good. How …
$ text_w_direction <chr> "All right Jim. Your quarterlies look very good. How …
$ imdb_rating      <dbl> 7.6, 7.6, 7.6, 7.6, 7.6, 7.6, 7.6, 7.6, 7.6, 7.6, 7.6…
$ total_votes      <int> 3706, 3706, 3706, 3706, 3706, 3706, 3706, 3706, 3706,…
$ air_date         <chr> "2005-03-24", "2005-03-24", "2005-03-24", "2005-03-24…

Fix air_date for later use.

theoffice <- theoffice %>%
  mutate(air_date = ymd(as.character(air_date)))

We will

Note: The episodes listed in theoffice don’t match the ones listed in the data we used in the cross validation lesson.

theoffice %>%
  distinct(season, episode)
# A tibble: 186 × 2
   season episode
    <int>   <int>
 1      1       1
 2      1       2
 3      1       3
 4      1       4
 5      1       5
 6      1       6
 7      2       1
 8      2       2
 9      2       3
10      2       4
# ℹ 176 more rows

Exercise 1 - Calculate the percentage of lines spoken by Jim, Pam, Michael, and Dwight for each episode of The Office.

Exercise 2 - Identify episodes that touch on Halloween, Valentine’s Day, and Christmas.

Exercise 3 - Put together a modeling dataset that includes features you’ve engineered. Also add an indicator variable called michael which takes the value 1 if Michael Scott (Steve Carrell) was there, and 0 if not. Note: Michael Scott (Steve Carrell) left the show at the end of Season 7.

Exercise 4 - Split the data into training (75%) and testing (25%).

set.seed(1122)

Exercise 5 - Specify a linear regression model.

Exercise 6 - Create a recipe that updates the role of episode_name to not be a predictor, removes air_date as a predictor, uses season as a factor, and removes all zero variance predictors.

Exercise 7 - Build a workflow for fitting the model specified earlier and using the recipe you developed to preprocess the data.

Exercise 8 - Fit the model to training data and interpret a couple of the slope coefficients.

Exercise 9 - Perform 5-fold cross validation and view model performance metrics.

#set.seed(345)
#folds <- vfold_cv(___, v = ___)
#folds
#
#set.seed(456)
#office_fit_rs <- ___ %>%
#  ___(___)
#
#___(office_fit_rs)

Exercise 10 - Use your model to make predictions for the testing data and calculate the RMSE. Also use the model developed in the cross validation lesson to make predictions for the testing data and calculate the RMSE as well. Which model did a better job in predicting IMDB scores for the testing data?

New model

Old model

TO DO: See what ___ is.

#| label: old-model
#| error: true

office_mod_old <- linear_reg() %>%
  set_engine("lm")

office_rec_old <- recipe(imdb_rating ~ season + episode + total_votes + air_date, data = office_train) %>%
  # extract month of air_date
  step_date(air_date, features = "month") %>%
  step_rm(air_date) %>%
  # make dummy variables of month 
  step_dummy(contains("month")) %>%
  # remove zero variance predictors
  step_zv(all_predictors())

office_wflow_old <- workflow() %>%
  add_model(office_mod_old) %>%
  add_recipe(office_rec_old)

office_fit_old <- office_wflow_old %>%
  fit(data = office_train)

tidy(office_fit_old)

___